
1931 

SIMULTANEOUS EFFECT OF AXIAL DISPERSION AND ADSORPTION 
KINETICS ON A FORM OF THE BREAKTHROUGH CURVE 
OF AN ADSORBER 

Milan KOClruK and Jaroslava HALOVA* 
J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, 
Czechoslovak Academy of Sciences, 12138 Prague 2 

Received May 19th, 1981 

The model of an adsorption bed is described in which the effect of axial dispersion and overall 
adsorption kinetics on a shape of the breakthrough curve is considered simultaneously. Separation 
of the effects of convection and axial dispersion from the effect of overall kinetics was achieved 
applying the method of statistical moments. On the basis of relations derived for the moments, 
several further characteristics of the breakthrough curves were expressed. 

A number of papers have been published during the past 15 years which describe 
the form of the breakthrough curve of an adsorber by means of the statistical moment. 
The authors l

-
7 used the method of statistical moments for analysis of a number 

of kinetic effects which are of importance in the sorption process on a fixed bed. 
This paper provides results which are of special interest in the adsorption from the 

gas phase and it represents an extension of our previous papers, where only the in­
fluence of simultaneous convection and sorption kinetics was considered. The re­
results enable one to predict a shape of the breakthrough curve assuming that the 
static capacity of the bed and the adsorption kinetics, measured for a sample of the 
column packing are known. The simple criteria derived are useful for a rapid estima­
tion of the importance of various effects on the shape of the breakthrough curves, 
efficiency of the adsorber, etc .. 

An advantage of this method is that no detailed knowledge of rate mechanism 
is needed. It is sufficient to know the time dependence of accumulation of the com­
ponent sorbed by the sorbent. This information represents a response of the sample 
to the unit step change of sorbate concentration at the external surface of the sorbent. 
Usually it is obtained by the gravimetric method. 

Such a kinetic measurement must be carried out under conditions close to those 
of the breakthrough curve. The main difficulty consists in establishing similar hydro­
dynamic conditions both in the kinetic experiment and in the sorption bed. An ex­
perimental arrangement which meets this condition sufficiently well was proposed 
by Timofeev9

• 
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1) It 'is assumed that the adsorption bed is of constant cross- ~ ection and that the 
geometrical arrangement of the adsorbent packing possesses the following properties: 
Size and shape distribution of the sorbent particles can be rather general. It can be, 
however, regarded as homogeneous in the following sense - when selecting a volume 
element in the bed which is small with respect to the volume of the column but at the 
same time large enough so that the intergranular porosity Q( can be defined in it 
(Q( is the ratio of the free volume between particles in the given volume element to the 
volume of this element), one finds the same porosity value for any arbitrarily chosen 
volume element. The kinetic curve, which one would measure with any of these 
adsorbent elements would then be identical. 

2) An incompressible carrier medium flows with the linear velocity u in the direc­
tion of z axis (parallel to the column axis). 

3) The adsorption isotherm of the given sorbate-sorbent system is linear 

a = K. c, (1) 

where cis the concentration of the sorbate in the intergranular volume (in mol/cc), 
a the concentration of the sorbate within the grains of the adsorbent (expressed as 
the amount of sorbate per a unit volume of granules-including the micropores) , 

4) The concentration c of the sorbate in the mobile phase is so low that the con­
centration changes resulting from the sorption do not affect the flow rate of the 
carrier medium in the intergranular space. 

5) It is assumed that the bed is operated under isothermal conditions. 

6) The pressure drop along the column is negligible. 

7) Axial dispersion characterized by the coefficient Dz (generally depending 
on hydrodynamic conditions) plays a role in the intergranular space. 

The density of the mass-flow in the case of axial dispersion is given by a relation: 

iD = -Diocjoz). (2) 

8) It is assumed that the external diffusion can either be neglected or, on contrary, 
its contribution can be included in the overall adsorption kinetics (i.e. that com­
parable hydrodynamic conditions can be ensured in both types of experiments). 

In addition, the following two general conditions must be fulfilled: 

A) The adsorber behaves as aiJinear system (the linearity of the adsorption iso­
therm is a condition necessary, not satisfactory). 

B) All reactions occurring in the system are reversible (admitted are only reactions 
within the sorbent particles). 
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Under conditions 1 - 8, the mass balance equation for a volume element of the ad­
sorber can be written as: 

oC(z, t) Jot + U oC(z, t)Joz + (l Jrx - 1) K oA(z, t)Jot 

= Dz 02C(Z, t)JOZ2 , (3) 

C(z, t) = c(z, t) Jco, Co is the concentration of the sorbate in the mobile phase at the 
inlet of the adsorber, A(z, t) = a(z, t)Jao is the instantaneous value of relative satura­
tion of the adsorbent at a given place of the column, ao = K. Co; t is a time coordinate, 
measured from the moment when a step change in concentration of the sorbed 
compound was applied to the inlet of the sorption bed. 

As a result of the validity of condition (A), the expression oA(z, t)Jot can be 
expressed by means of convolution of the function C(z, t) and the function 

y(,) = [me,) - m(o)]J[m( oo) - m(o)] , (4) 

This is a kinetic curve showing the time dependence of saturation of the adsorbent 
sample, assuming that at , = 0 a concentration step change was applied to the 
surface of the adsorbent. m( ,), m( 0), m( 00) denote the amount of the sorbate present 
in the given sample of the bed packing at the corresponding time. 

We can therefore write: 

oA(z, t)Jot = ~ flOy(t - ,)Jct C(z, ,) d, . 
at 0 . 

(5) 

The initial and boundary conditions for the adsorption in the bed (free of sorbate 
at t = 0), are 

for t = 0, z > 0 is C(z, t) = A(z, t) = 0, (6) 

for t < 0 is c(o, t) = 0, for t > 0, c(o, t) = 1 , (7) 

for t > 0, z --+ 00 is C(z, t) = o. (8) 

The condition (B) can be formulated as: 

for o < z < 00: lim C(z, t) = lim A(z, t) = lim y(,) = 1. (9) 
t-+c:o t ...... oo 

Applying the Laplace transform to the system of equations (3), (5), (6), (7) , (8) and 
solving the . corresponding boundary-value problem for the ordinary differential 
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equation of second order we obtain solution of the problem in the Laplace domain: 

sE(z, s) = exp {zuj2Dz - z J [(uj2Dz)2 + w(s)jDz ]} , (10) 

where 

C(z, s) = f~ e-'( C(z, t) dt, (11) 

w(s) = s{1 + (l/ct - 1) K[s y(s)]} , (12) 

(13) 

where s denotes a complex variable. 

As in paper6 we applied the operational calculus for the straightforward calcula­
tion of normal statistical moments of the breakthrough curve C(z, t) , using the known 
relation10

: 

p~ = (-It lim dnn [s E(z, s)], n = 0, 1,2, ... 
..... 0 ds 

(14) 

Applying this relation to equation (10) and introducing the normal moments of the 
kinetic curve y(r) according to (15) 

An = ,n(dy/d,) d, = lim - [s y(s)] f
OO dn 

o ..... 0 dsn 
(15) 

we obtain (using the well-known relation between normal and central moments 10
) 

final expressions for the central moments Pn of the break through curves. 

For the first normal moment of the breakthrough curve we obtain : 

(16) 

where (pDv = zju (17) signifies the mean residence time of the molecule in the mobile 
phase during its motion through the bed and 

(pD. = (z/u)(l/ct - 1) K (18) 

is the mean residence time of the molecule in the stationary phase. 
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For the second central moment we gtt: 

and 
D~ = Dz j[l + (l ja - 1) KJ ' 

U = u[1 + (l/a - l)K]-l. 

1935 

(20) 

(21) 

With respect to the fact that U = Z/I1~, U in fact represents the mean effective velocity 
of the motion of the sorbed molecule along the sorbent bed. 

In order to explain the meaning of the quantity 2D~/U2 let us carry out the fol­
lowing consideration, based on the model of Glueckaufll . 

If the sorbent bed is replaced by a number N D of identical, ideally mixed vessels, 
in which the adsorption equilibrium between the mobile and stationary phase is 
established instantaneously in each of the vessels, the substitute system must meet 
two conditions. First, the overall capacity of the mobile and stationary phase 
in the system of replaced vessels must equal the corresponding capacity of the ad­
sorber. Second, the total number of vessels must be chosen such that 112in the break­
through curves of the adsorber and substitute model system are equal. 

The mass balance of the sorbate component in the substitute system is expressed 
by a system of difference-differential equations of the type 

Cn- 1 - Cn = (ilz/u) [1 + (l/a - 1) K] ed~n), n = 1,2,3, . .. , ND (22) 

where ilz = zjND• 

For further calculation one can substitute the function Cn(t), defined only in the 
points n = 0, 1,2, .'" ND by a function continuous in z; then it is possible to use 
the Taylor expansion in the neighbourhood of an arbitrary point of the given 
sequence: 

C(z - ilz, t) - C(z, t) = -ilz aC(z, t)jaz + (ilz2j2) a2Cjaz2 (23) 

thus, after the transformation, equation (22) obtains the form: 

ac/at + U ac/az = [(ilzU)/2] a2Cjaz2 . (24) 

It can be shown that in agreement with the above formulated equivalence criterion 
between the original equilibrium column and the substitute model system of mixers 
(requiring equal 112 values of the breakthrough curves) it must hold that 

D~ = (ilzU) /2 . (25) 
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The expression 2D~/U2 in equation (19) has a dimension of time and it will there­
fore be denoted by a symbol 

(26) 

Using equations (25), (20) and (21) we obtain for TD: 

TD = (Llz/u) [1 + (l/a - 1) K] = Il~/ND. (27) 

We can see that TD has the meaning of the residence time of a molecule on one mixer. 

Equation (19) can be therefore rewritten to a form 

(28) 

where la = (Il~)a/Il~ represents a fraction of the time the molecule spends in the 
adsorbent. 

In an analogous way, expressions for the third- and higher order central moments 
are obtained from the Laplace transform of the breakthrough curves. We present 
the final expressions only for 113 since the practical importance of higher order values 
is low due to large errors encountered in their experimental estimation. 

113 = 31l~ {(2D~/U2y + (2D~/U2) . 2Ada + Ada} 

= 31l~{(TD)2 + 2AdaTD + A2/a}. (29) 

The equality requirement of 112 in the breakthrough curves of the adsorption bc:d 
and of the cascade model must hold even for a case where the cascade consists 
of only one vessel. In such case we obtain a limiting value of 112 for the so-called 
mixed flow adsorber (Carberry reactor). 

Denoting residence time of a molecule in the mixed flow reactor as TM' and using 
. the equality: 

(30) 

equation (28) gives after substitution 

(31) 

or when expressing la TM by means of the dead volume Vt of the adsorber (volume not 
involving the sorbent particles) and by means of the volume flow rate v: 

(32) 

Collection Czechoslovak Chern. Commun. [Vol. 47] [1982] 



Axial Dispersion and Adsorption Kinetics 1937 

Such an approach cannot be applied for the derivation of the higher-order mo­
ments of the breakthrough curves of the mixed flow reactor. As follows from direct 
calculation of the moments by means of equation (22) (i.e. on basis of the discontinu­
ous model), the contribution to 113 caused by mixing is: 

(33) 

The continuous model would give for a mixed flow reactor in tquation (33) a coef­
ficient 3, in contradiction with the experimental facts. 

Using equations (28) and (29) we shall express some further characteristics of the 
adsorption bed. 

The number of theoretical plates N of the column is defined by equation (12) 

(34) 

so that 

(35) 

The height of the theoretical plate H = z/N = ZIl2/(Il~Y, measured as a function 
of Il~ enables a most convenient experimental determination of the parameters TO 

and }'l. In fact, by plotting H against zlll~ == V we get an analogy of the van Deemter 
relation. The term To decreases rapidly with rising V and the relation, after reaching 
its minimum approaches rapidly the asymptotic linear behaviour H = 2AdaV; 
thus from the slope of this relation we obtain a quantity Ada. As long as the value 
of the slope K of the adsorption isotherm K is greater than 100, one can usually 
regard fa ~ 1, determine Al and finally the quantity To(V). 

In the opposite case it is necessary to determine independently the intergranular 
porosity IX. 

Another important characteristics of the breakthrough curve is given by the coef­
ficient of skewness S (ref. l3

). 

(36) 

where (j = -J 112 is a standard deviation. The positive value of this coefficient indicates 
a breakthrough curve tailing in the positive direction of t. Thus, using equations (28), 
(29) and (36) we can write: 

(37) 

where 

A = 2Ada and B = Ada. 
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For the case of prevailing axial dispersion (B = A = 0): 

(38) 

In contrast, for the case of prevailing effect of the overall kinetics ('D = 0): 

(39) 

The equations (37)-(39) reflect the well known fact that the increase of column 
length lowers the asymmetry of the breakthrough curves, proportionally to Z-1/2. 

The presented examples illustrate the way in which the overall adsorption kinetics, 
represented by the moments of the kinetic curves, affects the behaviour of an ad­
sorption bed under dynamic conditions. 

In many cases the derived criteria allow to estimate fast the efficiency of the ad­
sorption bed, the breakthrough time and the extent of utilization of capacity of the 
adsorption bed14

. 

The authors would like to express their gratitude to Dr M. Smutek for inspiring discussions and 
critical comments. 
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